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Abstract
In the present paper we report a vibronic model for the absorption bands of
the Cr2+ ion in CdSe and CdSe0.6S0.4 crystals. For the most probable impurity
clusters, CrSe4, CrSe3S, CrSeS3 and CrSe2S2, the crystal field splittings and the
vibronic coupling parameters are estimated with the aid of the exchange charge
model of the crystal field accounting for the exchange and covalence effects.
On this basis the transitions responsible for the formation of the optical bands
arising from the CrSe4, CrSe3S, CrSeS3 and CrSe2S2 species are determined
and the profiles of the absorption bands corresponding to these species are
calculated. The total spectrum of the CdSe0.6S0.4:Cr2+ crystal is obtained by
summation over partial spectra arising from all mentioned species. The profiles
of the absorption bands in CdSe:Cr2+ and CdSe0.6S0.4:Cr2+ calculated on the
basis of the numerical solution of the dynamical vibronic problems prove to be
in quite good agreement with the experimental data.

In memory of Professor Yurii Perlin (17 September 1917–10 March 1990)—to
highlight his exceptional achievements and kudos.

1. Introduction

Room-temperature mid-IR (2–5 μm) sources of radiation combining variable spatial coherence
with continuous ultrabroad or multiwavelength spectra are of vital importance for many areas
of research and technical applications. Since the pioneering research works of Deloach et al
[1] and Page et al [2] on detailed investigation of the spectral properties of metal-doped zinc
chalcogenides, laser operation on the 5E → 5T2 transition in the Cr2+ ion in chalcogenide host
materials [3, 4] like ZnSe, CdSe, ZnS and CdMnTe has been demonstrated. Recently an optical
study of CdSex S1−x crystals doped with Cr2+ has been performed [5]. Due to the larger thermal
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conductivity of CdS compared to CdSe the CdSeS alloy may be considered as an improvement
over the CdSe system. Alloying with CdS gives the possibility of shifting the position of
the 5E → 5T2 band in the Cr2+ ion towards higher energies and increasing the band gap of
the host material, which might decrease the chance of excited state absorption. Thus, recent
experimental findings clearly indicate wide prospects for the application of II–VI crystals doped
with transition metal ions. At the same time investigations of new materials for IR quantum
electronics will be successful if these investigations are supported by theoretical modelling
of the spectroscopic and relaxation characteristics of the systems under consideration. The
cornerstone in the theoretical consideration of the optical spectra of doped crystals and the
lifetimes of excited impurity states is the vibronic coupling of the metal ions with the lattice
vibrations. It is this interaction that closely relates to the possibility of tunable lasing on broad
phonon assisted bands and the main features of the active media. Although the first fundamental
works on the vibronic Jahn–Teller (JT) interactions and optical spectra of the impurity ions
in II–VI crystals were performed in the early 1970s the problem of the lifetimes and band
shapes for the vibronically assisted transitions is far from being solved and applied for actual
lasing materials. In the initial model proposed in [6] the experimental data on Cr-doped II–
VI compounds were interpreted in terms of a strong static JT coupling with the vibrational
modes of e-symmetry in the ground 5T2 state. The model suggested in [7] for ZnSe:Cr2+ was
also based on the assumption that only the e-mode participates in the intra-ion absorption and
luminescence transitions. In this paper the quadratic vibronic interaction in the excited 5E state
was taken into account. A dynamic JT model was developed in [8]. Further study of II–VI
crystals doped with Cr2+ ions and other transition metal ions [9, 10] led to essential progress
and also demonstrated that the data obtained using different experimental methods could be
explained from a common point of view under the assumption of the dynamic JT effect. At
the same time the main outcome of the recent papers [10, 11] concerned the structure of the
zero-phonon lines of V2+ and Cr2+ ions in II–VI compounds at low temperatures. In [11] it was
found that e-modes only lead to intensities that do not agree well with those of the zero-phonon
doublet observed both in emission and absorption in the cases of ZnS and ZnSe, while t2 modes
give a good explanation of transition energies and transition strengths in the same cases. Due to
the lack of information regarding the vibronic coupling constants the models developed earlier
for transition metal ion (TMI)-doped II–VI compounds were based on the consideration of the
interaction of the impurity centre with the only kinds of JT modes (e or t2), with the subsequent
determination of the vibronic coupling constant from the fit to experimental data. Quantum-
mechanical calculations of the shapes of the optical bands with allowance for the JT effect in
both the initial and final states have not been performed.

A theoretical study of the vibronic JT interaction in a series of II–VI crystals doped with
Cr2+ ion was reported for the first time in our recent papers [12, 13]. For the tetrahedrally
coordinated Cr2+ ion (high-spin d4 configuration) the vibronic coupling parameters were
evaluated in the framework of the exchange charge model of the crystal field accounting for the
exchange and covalence effects [14–16], and on the basis of these calculations the JT problem
was formulated. An examination of the optical absorption bands in CdSe:Cr2+ and mixed
CdSex S1−x :Cr2+ (x > 0) crystals has never been performed. In the present communication
we report a model of the absorption bands of the Cr2+ ion in CdSe and CdSe0.6S0.4. Within
the framework of this model for the CdSe0.6S0.4:Cr2+ system the most probable distributions
of selenium and sulfur atoms in the nearest surroundings of Cr2+ will be determined. First,
for these ligand surroundings of Cr2+ the crystal field splittings and the vibronic coupling
parameters will be microscopically calculated. Then, the subsequent evaluation of the profiles
of the optical absorption bands in CdSe:Cr2+ and mixed CdSe0.6S0.4:Cr2+ crystals will be
performed.
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2. Possible arrangements of selenium and sulfur atoms in the nearest surroundings of
cadmium

The observed shift of the 5E → 5T2 band position in the CdSe0.6S0.4 crystal can be attributed to
the formation of impurity complexes with different contents of sulfur and selenium atoms in the
nearest surroundings of the Cr2+ ion. As the first step we examine a pure CdSe0.6S0.4 crystal
and calculate the number of complexes in which the Cd2+ ions are surrounded by: (i) four
selenium atoms; (ii) three selenium atoms and one sulfur atom; (iii) two selenium atoms and
two sulfur atoms; (iv) three sulfur atoms and one selenium atom; (v) four sulfur atoms. The
probability of existence of a certain tetrahedral surrounding is given by the expression

Pi = Cn
m Pn

Se Pm
S , (1)

where PSe and PS are the fractional concentrations of Se and S atoms, respectively, i.e. the
probabilities that the given neighbour of the Cd2+ ion is a selenium or a sulfur atom, Cn

m =
n!/(m!(n − m)!) is the binomial coefficient that describes the number of possible combinations
for m objects to be placed in n sites (m � n), n and m are the numbers of Se and S atoms in the
considered neighbourhood configuration, respectively. Then, for the fractional concentrations
PSe = 0.6 and PS = 0.4, one can easily calculate the probabilities of existence of all mentioned
distributions:

P1 = C4
0 P4

Se = 0.1296; P2 = C4
1 P3

Se PS = 0.3456; P3 = C4
3 PSe P3

S = 0.1536;
P4 = C4

2 P2
Se P2

S = 0.3456 P5 = C4
4 P4

S = 0.0256.
(2)

From equation (2) it follows that the second and fourth configurations are the most probable
ones; at the same time the first and third configurations are less frequent, but also give an
appreciable contribution. Finally, the fifth configuration has a negligible probability and will be
neglected in all subsequent calculations. We assume that the Cr2+ ions are distributed randomly
in the CdSe0.6S0.4 lattice and substitute the Cd2+ ones in different mixed surroundings of sulfur
and selenium with equal probability. Under such an assumption the number of impurity clusters
CrSe4, CrSe3S, CrSe2S2 and CrS3Se prove to be proportional to P1, P2, P3 and P4, respectively.
The total absorption spectra of the CdSe0.6S0.4:Cr2+ system will be calculated as a sum of
spectra arising from CrSe4, CrSe2S2, CrSe3S and CrS3Se species. Each particular contribution
in this sum will be multiplied by the corresponding statistical weight given by equation (2).

3. The Hamiltonian of the system

The total Hamiltonian for the impurity ion in a crystal can be represented as

H = He(r,R0)+ Hυ(q)+ Heυ(r, q), (3)

where r and q are the sets of the electronic and vibrational coordinates, respectively. He(r,R0)

is the electronic Hamiltonian determining the wavefunctions and the eigenvalues of the
impurity ion in a fixed nuclear configuration q = 0. This configuration corresponds to the
positions of the ions R = R0 in the host lattice and does not take into account the lattice
relaxation arising from the embedding of the ion in the ground state. Hυ(q) is the Hamiltonian
of the free lattice vibrations:

Hυ =
∑

μ̄�̄γ̄

h̄ωμ̄�̄
2

(
q2
μ̄�̄γ̄

− ∂2

∂q2
μ̄�̄γ̄

)
, (4)

where qμ̄�̄γ̄ are the symmetry adapted vibrational coordinates corresponding to the irreducible
representations (irreps) �̄ (including multiple representations) and ωμ̄�̄ is the frequency of the
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vibration μ̄�̄ (symbol μ̄ enumerates the repeating vibrational representations). Denoting the
displacements of the ions of the impurity complex from their positions R0

p (at q = 0) by
�Rp = Rp − R0

p (p is the index of the position) these vibration coordinates can be written as:

qμ̄�̄γ̄ = 1

l�̄

∑

p

U μ̄�̄γ̄
p �Rp, (5)

where U
μ̄�̄γ̄
pα (α = x, y, z) are the elements of the unitary matrix for the transformation of the

Cartesian displacements �Rp into the dimensionless coordinates qμ̄�̄γ̄ , lμ̄�̄ = (h̄ωμ̄�̄/ fμ̄�̄)
1/2

and fμ̄�̄ is the force constant corresponding to this vibration. Finally, the last part of the
Hamiltonian (3) is the vibronic interaction for the impurity ion (related also to the positions
R = R0). The operator Heυ consists of the parts corresponding to the vibrational irreps of the
impurity cluster of the defined symmetry:

Heυ =
∑

μ̄�̄γ̄

νμ̄�̄γ̄ (r)qμ̄�̄γ̄ . (6)

The operator vμ̄�̄γ̄ (r) with the dimension of energy can be expressed as:

νμ̄�̄γ̄ (r) =
∑

p,i

∂W (ri − Rp)

∂qμ̄�̄γ̄

∣∣∣∣∣
qμ�̄γ̄=0

= lμ̄�̄
∑

p,i

∂W (ri − Rp)

∂Rp

∣∣∣∣∣
Rp=R0

p

× U μ̄�̄γ̄
p =

∑

i

νμ̄�̄γ̄ (ri), (7)

where W (ri − Rp) is the potential energy of the interaction between the i th electron of the ion
and the pth atom of the host crystal in the position R0

p.
The next step of our consideration is the derivation of the symmetry adapted vibrational

coordinates qμ̄�̄γ̄ and operators νμ̄�̄γ̄ (r) of electron-vibrational interaction for the impurity
complexes CrSe4, CrSe3S, CrSe2S2 and CrS3Se. We assume that the replacement of selenium
atoms by sulfur ones does not displace the position of the Cr2+ ion in the mentioned complexes
and leads only to the change of the symmetry of the immediate environment due to the different
radii of Se and S atoms. It is supposed that in the complexes CrSe4 and CrSe2S2 the symmetry
of the ligand field is Td and C2v (figures 1(a) and (b)), respectively, while in the complexes
CrSe3S and CrS3Se the Cr ions acquire a trigonal symmetry surrounding (C3v) (figures 1(c)
and (d)). In the case of a tetrahedral complex CrSe4 we are dealing with the full symmetric
A1 tetragonal E and two trigonal vibrations, T2

(1) and T2
(2). For this complex the symmetry

adopted coordinates qμ̄�̄γ̄ and the operators νμ̄�̄γ̄ (r) obtained in the exchange charge model of
the crystal field [12–16] are given in [13]. For the complex CrSe3S of C3v symmetry the active
vibrations are two full symmetric vibrations A(1)

1 , A(2)
1 and two doubly degenerate vibrations

E(1) and E(2). The corresponding symmetrized displacements qμ̄�̄γ̄ are given in the appendix.
In the case when the local Cr2+ surroundings consist of three S and one Se atom the symmetry
adopted coordinates qμ̄�̄γ̄ are also expressed by relations (A.1) with the single difference that
now the mass m corresponds to the sulfur atom while the selenium atom possesses the mass
M . The low-symmetry complex C2v only possesses one-dimensional vibrations: three full
symmetric vibrations A(1)

1 , A(2)
1 , A(3)

1 and three nonsymmetric vibrations A2,B1 and B2. The
vibrational coordinates qμ̄�̄γ̄ for this complex are also given in the appendix.

4. Absorption band of the CrSe4 complex

The ground 5D term of a free Cr2+ ion (high-spin electronic configuration d4) is split by the
tetrahedral crystal field in a CrSe4 species into the orbital triplet 5T2(t2

2e2) and orbital doublet

4
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Figure 1. Ligand arrangements in the CrSe4−ySy (y = 0–3) clusters with the indication of
corresponding frames of reference: (a) CrSe4; (b) CrSe2S2; (c) CrSe3S; (d) CrSeS3; top view
of CrSe3S (e) and CrSeS3 (f) species.

5E(t3
2e), the former being the ground term (figure 2(a)). In the strong crystal field basis the

determinant wavefunctions |t2
n(S1�1)em(S2�2)S�γMS〉 for these two terms S� of Cr2+ ion

are given by:

|t2
3(4A2)e(

2E)5Eu,MS = 2〉 = |ξηςυ|, |t22(3T1)e
2(3A2)

5T2ζ,

MS = 2〉 = |ξηuυ|, (8)

5
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Figure 2. Crystal field splittings for the impurity CrSe4−ySy (y = 0–3) clusters: (a) CrSe4;
(b) CrSe2S2; (c) CrSe3S; (d) CrSeS3.

where the symbol γ enumerates the basis functions of the irrep �(E and T2), MS is the spin
projection and the conventional notation | . . . | is used for the Slater determinants. The standard
cubic basis sets for the one-electron d-functions T2(ξ, η, ς) (ξ ∝ yz, η ∝ xz, ζ ∝ xy) and
E(u, υ) (u ∝ 3z2 − r 2, υ ∝ √

3(x2 − y2)) are used. In equation (8) the only wavefunction for
each degenerate term is given; the basis is related to the C2 axis of the tetrahedron.

First, we present the Hamiltonian (3) of the system in the form [12, 13]

H = H0 + H ′, (9)

where

H0 = He(r,R0)+ νA1 (r)q0 + h̄ωA1

2
q2

0 + h̄ωA1

2

(
Q2 − ∂2

∂Q2

)

+
∑

μ1�̄γ̄

h̄ωμ1�̄

2

(
q2
μ1�̄γ̄

− ∂2

∂q2
μ1�̄γ̄

)
(10)

H ′ = υA1(r)Q +
∑

μ1�̄γ̄

νμ1�̄γ̄
(r)qμ1�̄γ̄

(11)

Q = qA1 − q0 is the full symmetric coordinate counted off from the new equilibrium position

q0 = −VT2/h̄ωA1 , 〈5T2(t2
2e2)

∣∣νA1(r)
∣∣5T2(t2

2e2)〉 = VT2 and

υA1(r) = vA1(r)+ h̄ωA1 q0
(12)

is the redefined vibronic operator for full symmetric A1 vibrations adapted to the new positions
of the ions, the index μ1 stands for tetragonal E and trigonal T2

(1), T2
(2) vibrational modes of

the tetrahedral complex.

6
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One can easily prove that

〈5T2

∣∣υA1(r)
∣∣5T2〉 ≡ υA1(T2) = 0, 〈5E|υA1(r)|5E〉 ≡ υA1(E) = υt − υe, (13)

where υt and υe are the single electron matrix elements. The vibronic Hamiltonian for the
5T2 ⊗ (e + 2t2) JT problem is the following:

Heυ(T2) = υE(T2)(OEuqEu + OEυqEυ)+ υ
(1)
T2
(T2)(OT2ξq

(1)
T2ξ

+ OT2ηq
(1)
T2η

+ OT2ςq(1)T2ς
)

+ υ
(2)
T2
(T2)(OT2ξq

(2)
T2ξ

+ OT2ηq
(2)
T2η

+ OT2ςq(2)T2ς
). (14)

For the 5E ⊗ (a1 + e) problem one finds

Heυ(E) = υE(E)(O
′
EuqEu + O′

EvqEv)+ υA1(E)OA1 Q. (15)

All matrices in equations (14) and (15) are defined through the Clebsch–Gordan coefficients:
〈�γ |O�̄γ̄ |�γ ′〉 = 〈�γ |�γ ′�̄γ̄ 〉 for the Td point symmetry group. In equations (14) and (15)
the values υμ

�̄
(�) = [�]−1/2〈� ‖ νμ�̄ ‖ �〉 ([�] is the dimension of the irrep �) are the vibronic

coupling constants for the vibrations T(1)2 , T(2)2 and E, 〈� ‖ vμ�̄ ‖ �〉 is the reduced matrix

element of the operator vμ�̄γ̄ (r), while υA1 (E) = 〈E ‖ νA1 ‖ E〉/√2 − 〈T2 ‖ νA1 ‖ T2〉/
√

3.
The ground 5T2(t2

2e2) and excited 5E(t3
2e) terms of the Cr2+ ion are orbitally degenerate,

resulting in T2 ⊗ (a1 + e + 2t2) and E⊗ (a1 + e) JT vibronic problems. In the exchange charge
model of the crystal field [14–16] the expressions for the vibronic coupling constants are as
follows:

υA1(E) = −2e2lA1

27R6
(25Z〈r 4〉 + 18R4G(S4(R)− RS′

4(R))),

υE(E) = −8e2lE

63R6
(5Z〈r 4〉 − 9Z〈r 2〉R2 − 18R4GS2(R)+ 18R4GS4(R)),

υE(T2) = 4
√

2e2lE

189R6
(20Z〈r 4〉 + 27Z〈r 2〉R2 + 54R4GS2(R)+ 72R4GS4(R)),

υ
(1)
T2
(T2) = 2

√
2e2l(1)T2

189R6
((100〈r 4〉 + 81〈r 2〉R2)Z − 18G R4(−3S2(R)− 4S4(R)

+ 3RS′
2(R)+ 4RS′

4(R)))

υ
(2)
T2
(T2) = 4e2l(2)T2

189R6
((27R2〈r 2〉 − 50〈r 4〉)Z + 18G R4(3S2(R)− 10S4(R)))

(16)

where l�̄ = (h̄ω�̄/ f�̄)
1/2, ωμ�̄ is the frequency of the vibration �̄ and f�̄ is the force

constant, R is the distance between the Cr2+ ion and the ligands, S2(R), S4(R) are the overlap
integrals [12, 13]:

Sl(R) = S2
s (R)+ S2

σ (R)+ γl S
2
π (R), γ2 = 1, γ4 = −4/3,

Ss(R) = 〈3d,m = 0|n′′s〉, Sσ (R) = 〈3d,m = 0|n′′ p,m = 0〉,
Sπ (R) = 〈3d,m = ±1|n′′ p,m = ±1〉,

|3dm〉 and |n′′s〉, |n′′ pm〉 are the Cr2+ and the ligands wavefunctions, respectively, S′
l (R) =

dSl(R)
dR . In all subsequent calculations we employ the simplest version of the exchange charge

model with the only phenomenological dimensionless parameter G that has been determined
with the aid of the relation

Dq = −2(5Ze2〈r 4〉 + 18R4GS4(R))

135R5
(17)

and shown to be equal in CdSe:Cr2+ and CdS:Cr2+ crystals (see table 1). The overlap integrals
S2(R), S4(R) have been computed using the radial atomic ‘double zeta’ 3d wavefunctions of

7
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Table 1. Parameters of the exchange charge model for CdSe and CdS crystals doped with Cr2+
ions (a0 is the Bohr radius).

Crystal
Dq
(cm−1) G

R
(Å) S2(R) S4(R)

S′
2(R)

(a−1
0 )

S′
4(R)

(a−1
0 )

h̄ω
(cm−1) Z

CdS −465 2.71 2.52 0.0163 0.0102 −0.0212 −0.0102 80 2
CdSe −395 2.71 2.62 0.0149 0.0091 −0.0180 −0.008 60 2

Table 2. Vibronic coupling constants (in cm−1) for the CrSe4 complex.

υE(T2) υ
(1)
T2
(T2) υ

(2)
T2
(T2) υA1 (E) υE(E)

pc ec Total pc ec Total pc ec Total pc ec Total pc ec Total

66 49 115 106 154 260 27 −20 7 −24 −74 −98 73 15 88

chromium, 4s, 4p functions of selenium and 3s, 3p functions of sulfur given in [17]. It should
be mentioned that for species CrSe4−ySy (y = 1–3) with mixed ligand surroundings the energy
levels and vibronic coupling constants are determined through overlap integrals Sl(Ri ) and their
derivatives S′

l (Ri ) = dSl(Ri)

dRi
, where Ri = R, R0, R and R0 are the distances between the Cr2+

ion and Se and S atoms, respectively The evaluated overlap integrals and their derivatives as
well as the parameters used for calculations of the vibronic coupling constants are collected in
table 1. The calculated vibronic coupling constants for all active modes of the CrSe4 complex
are given in table 2. Each vibronic constant is presented as a sum of contributions arising from
the electrostatic field of point ligand charges and from the exchange charge field, the last can be
considered as a measure of the effect of covalence. It is seen that the main contribution to the
vibronic coupling constants υE(T2), υ

(2)
T2
(T2), υE(E) in most cases comes from the field of point

charges. Meanwhile, the exchange charge field yields a dominant contribution to the vibronic
parameters υ(1)T2

(T2) and υA1(E). The data listed in table 2 also show that for the 5E term the
interaction with the E and A1 modes is approximately of the same strength. The JT interaction
with the T(1)2 vibrations proves to be dominant within the 5T2 term. The interaction of this term
with the E-mode is more than two times weaker than that with the T(1)2 vibrations. At the same
time the interaction with the second vibration of T2 symmetry is negligible for this term. The
results obtained from the calculation of the vibronic coupling constants have been used for the
description of the observed absorption band arising on the transition 5T2 → 5E of the CrSe4

cluster. Taking into account the predominant role of the interaction of the ground 5T2 term
with the trigonal T(1)2 vibrations at the first step in the evaluation of the shape of the absorption
5T2 → 5E band we will consider three-mode JT problems (e + a1) ⊗ E for the 5E state and
t2 ⊗T2 for the 5T2 state. It should also be noted that for the Cr2+ ion the spin–orbital interaction
(the constant of this interaction λ = 57 cm−1 [6]) is much weaker than the interaction with the
T(1)2 vibrations of the CrSe4 complex. At the same time the effects of spin–orbital interaction,
such as the splitting of the zero-phonon lines, are observed at very low temperatures. Taking
into account both these factors in the calculation of the shape of the 5T2 → 5E band at room
temperature the effect of spin–orbital interaction was not considered.

The ground 5T2 term is well isolated from the excited ones so that the hybrid vibronic
states corresponding to the dynamical JT problem in this state can be expressed as an expansion
in terms of the products of zeroth-order approximation electronic functions and the harmonic
oscillator functions for the full symmetric, tetragonal and trigonal vibrations

ψ(ν)n1,nu ,nυ = �n1(Q)�nu (qu)�nυ (qυ)
∑

γ=ξ,η,ζ
nξ ,nη,nζ

C (ν)
γ,nξ ,nη,nζ �nξ (qξ )�nη (qη)�nζ (qζ )

∣∣γ 〉, (18)

8
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where the symbol ν enumerates the hybrid (electron–vibrational) states, n1 ≡ nA1 , |γ 〉 stands
for the electronic wavefunctions ξ, η, ς of the 5T2 state, �n1(Q),�nu (qu),�nυ (qυ),�nξ (qξ ),
�nη (qη),�nζ (qζ ) denote the harmonic oscillator wavefunctions corresponding to the A1,E

and T(1)2 vibrations, respectively; actually the coefficients C (ν)
nξ ,nη,nζ

form the eigenvectors of the
infinite JT matrix. The energies of the vibronic levels arising from the t2 ⊗ T2 problem can be
presented as

E (ν)
n1,nu ,nυ

= h̄ω(nu + nυ + 1)+ h̄ω(n1 + 1/2)+ ε
(ν)
T2
, (19)

where the values ε(ν)T2
will be determined from the solution of the t2 ⊗ T2 JT problem for the

5T2-term. For the excited 5E state the vibronic wavefunction looks as follows

ψ
(ν′)
n′

1,nξ ,nη,nζ
= �n′

1
(Q − Q0)�nξ (qξ )�nη (qη)�nζ (qζ )

∑

γ ′=u,υ
nu ,nυ

C (ν′)
γ ′,nu ,nυ

�nu(qu)�nυ (qυ)|γ ′〉,

(20)

where Q0 = −υA1(E)/h̄ω, γ
′ = u, v; the sense of other notations is the same as in

equation (18). For the 5E term the linear interaction with the full symmetric vibration results in
the adiabatic problem, giving rise to a shift Q0 of the equilibrium position of the Q-coordinate.
The corresponding to (20) energy levels can be presented as

E (ν′)
n′

1,nξ ,nη,nζ
= 10Dq − (υA1(E))

2

2h̄ω
+ h̄ω(n′

1 + 1/2)+ h̄ω(nξ + nη + nζ + 3/2)+ ε
(ν′)
E ,

(21)

where energies ε(ν
′)

E will be obtained from the solution of the e ⊗ E vibronic problem.
In numerical calculations of the eigenvalues and eigenvectors of the dynamic vibronic

problems e ⊗ E and t2 ⊗ T2 the vibronic matrices were truncated. For the e ⊗ E problem the
number N of unperturbed vibrational states satisfied the condition (nu +nυ � N), where in the
calculation N = 100 was taken. For the t2 ⊗T2 problem the inequality nξ +nη+nζ � 60 held.
The general dimension of the vibronic matrix for the E term was 10 302 × 10 302. For the T2

term the dimension of the matrix was 119 133×119 133. The Lanczos recursion procedure with
a proper choice of the initial state was used to calculate the vibronic functions and energies [18].

The shape F1(�) of the absorption band can be presented as

F1(�) = 1

Z

∑

ν,ν′
nξ ,nη,nζ

n1,n′
1,nu ,nυ

Exp

[
− E (ν)

n1,nu ,nυ

kT

] ∣∣∣∣

〈
ψ
(ν′)
n′

1,nξ ,nη,nζ

∣∣�u �d∣∣ψ(ν)n1,nu ,nυ

〉∣∣∣∣
2

× δ(E (ν′)
n′

1,nξ ,nη,nζ
− E (ν)

n1,nu ,nυ
− h̄�), (22)

where �d and �u are the dipole moment and polarization vectors, respectively, the symbol |. . .|2
means the averaging over the light polarization,

Z =
∑

ν,
n1,nu ,nυ

Exp

[
−

E (ν)
n1 ,nu ,nυ

kT

]
=

∑

ν

Exp

(
− ε

(ν)
T2

kT

)/
8 sinh3(β/2)

is the partition function for the ground states, equation (22) contains averaging over the initial
states (n1, nu, nυ, ν) and summation over the final (n′

1, nξ , nη, nς , ν ′) ones, β = h̄ω/kT ,
hereunder the frequencies of the full symmetric, tetragonal and trigonal vibrations are taken to
be equal. The averaging and summation over the states of the A1 oscillator can be performed

9
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in the conventional way [19] and leads to a well known spectral distribution referred to as
‘Pekarian’. After some transformations equation (22) can be written as

F1(�) = |〈5E ‖ dT1 ‖ 5T2〉|2
3Z1

∑

ν,ν′
nξ ,nη,nζ

nu ,nυ

Exp

[
− E (ν)

nu ,nυ

kT

]
Exp

[
− 1

2
a coth

(
β

2

)]

×
∞∑

n=−∞
In

(
a

2 sinh(β/2)

)
Exp

[
nβ

2

]{
1

12
(C (ν)

ξ,nξ ,nη,nζ
)2

(√
3C (ν′)

u,nu ,nυ

+ C (ν′)
υ,nu ,nυ

)2 + 1
12 (C

(ν)
η,nξ ,nη,nζ )

2
(√

3C (ν′)
u,nu ,nυ − C (ν′)

υ,nu ,nυ

)2

+ 1
3

(
C (ν)
ζ,nξ ,nη,nζ

)2

(C (ν′)
υ,nu ,nυ )

2

}
δ(E (ν′)

nξ ,nη,nζ − E (ν)
nu ,nυ

+ h̄ωn − (υA1(E))
2/(2h̄ω)− h̄�) (23)

Z1 =
∑

ν

Exp

(
− ε

(ν)
T2

kT

)/
4 sinh2(β/2), a =

(
υA1(E)

h̄ω

)2

,

E (ν)
n1,nu ,nυ

− E (ν)
nu ,nυ

= h̄ω(n1 + 1/2), E (ν′)
n′

1,nξ ,nη,nζ
− E (ν′)

nξ ,nη,nζ
= h̄ω(n′

1
+ 1/2), (24)

where β = h̄ω/kT , In(
a

2 sinh(β/2) ) is the modified Bessel function and a is the heat release

parameter (the Pekar–Huang–Rhys parameter) and 〈5E ‖ dT1 ‖ 5T2〉 is the reduced matrix
element of the transition dipole moment. From equation (23) it is seen that the resultant optical
band is represented by the convolution of two discrete distributions: one is the optical band
arising from the JT interaction solely (transitions nu, nυ, ν → and nξ , nη, nς , ν ′) and another
one is the Pekarian [19] with the heat release parameter a formed by the n1 → n′

1 transitions

P(10Dq + h̄ωn − (υA1(E)
2/2h̄ω)− h̄�) = Exp

[
−1

2
a coth

(
β

2

)] ∞∑

n=−∞
In

(
a

2 sinh(β/2)

)

× Exp

[
nβ

2

]
δ(10Dq + h̄ωn − (υA1(E)

2/2h̄ω)− h̄�). (25)

In order to get the envelope curve (that appears due to the dispersion of the lattice
vibrations) the shape function of the individual line related to the transition between hybrid
vibronic states (n1, nu, nυ, ν) and (n′

1
, nξ , nη, nς , ν ′) is assumed to be of the Gaussian form

1√
2πλ2

Exp

[
− (E

(ν′)
nξ ,nη,nζ − E (ν)

nu ,nυ + h̄ωn − (υA1(E)
2/2h̄ω)− h̄�)2

2λ2

]
. (26)

To smooth the quantum discrete structure of the calculated band the second central moment
of the individual lines λ should be comparable with the h̄ω value. In further calculations for
the CrSe4 moiety we put λ = h̄ω = h̄ωCdSe = 60 cm−1 (see table 1). While calculating the
transition band at 300 K, N1 = 4600 and N2 = 2800 vibronic levels which originate from the
states 5E and 5T2 and fall into the ranges �E(5E) = 4000 cm−1 and �E(5T2) = 812 cm−1,
respectively, were taken into account. So the full number Ntot of examined vibronic transitions
that form the 5T2 → 5E absorption band at 300 K was N2 = 12 880 000. In the following in the
sums over the Bessel functions n was taken in the limits −30 � n � 30. Figure 3 represents
the absorption spectra K1(�) ∼ �F1(�) (K1(�) is the absorption coefficient) of the CrSe4

species at 300 K. A reasonably fair agreement with the experimental data [5] was obtained for
Dq = −395 cm−1 and vibronic coupling constants υ(1)T2

(T2) = 300 cm−1, υE(E) = 100 cm−1

and υA1(E) = −100 cm−1. The values of the vibronic parameters obtained by fitting are close

10
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Figure 3. Absorption spectrum of the CdSe:Cr2+ crystal at T = 300 K: circles, experimental
data [5]: solid line, calculated spectra in the case of υE(E) = 100 cm−1, υ

(1)
T2
(T2) =

300 cm−1, υA1 (E) = −100 cm1, Dq = −395 cm−1.

to those calculated in the exchange charge model (see table 2). The obtained result serves as a
convincing confirmation that the model employed describes reasonably the contribution of the
CrSe4 species to the observed absorption spectra of CdSe0.6S0.4:Cr2+.

5. Contribution from the CrSe3S and CrSeS3 impurity clusters to the absorption band

5.1. CrSe3S complex

When one of the four Se atoms is replaced by a S atom the symmetry of the ligand surroundings,
as was stated above, is lowered to C3v from Td. The crystal field operator written in the frame
of reference related to the C3 axis (figure 1(c)) looks as follows:

VCF(C3v) = 2e2√π
405(R0 R)5

{
−81

√
5R2(A−

2 + 2B2
−)Y20(θ, ϕ)

+ 2
√

70

R4
0

[5(A+
4 + A−

4 )+ 18(B+
4 + B−

4 )][Y43(θ, ϕ)− Y4−3(θ, ϕ)]

+ [14(5A+
4 + 18B+

4 )− 13(5A−
4 + 18B−

4 )]Y40(θ, ϕ)

}
, (27)

where

A±
p = 〈r p〉Z(R p+1

0 ± R p+1), B±
p = (R0 R)pG[R0Sp(R)± RSp(R0)].

In the trigonal crystal field (27) the ground 5T2 term of Cr2+ splits into two levels, 5E(1)

and 5A1, while the excited state 5E state remains unsplit (figure 2(c)). The wavefunctions of

11
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Table 3. Vibronic coupling constants (in cm−1) for the CrSe3S complex.

ν
(1)
A1
(5A1) ν

(2)
A1
(5A1) ν

(1)
A1
(5E) ν

(2)
A1
(5E)

pc ec Total pc ec Total pc ec Total pc ec Total

24 50 74 83 148 231 −16 −49 −65 −2 −6 −8

υ
(1)
A1
(5E) υ

(2)
A1
(5E) υE(1) (

5E) υE(2) (
5E)

pc ec Total pc ec Total pc ec Total pc ec Total

−40 −99 −139 −85 −154 −239 55 11 66 −0.3 0.1 −0.2

these levels have the form

|5Ex 〉 = 1√
2
(−|x1x0x−1u1| + |x1x0x−1u−1|),

|5E(1)x 〉 = 1√
2
(−|x1x0u−1u1| + |x0x−1u−1u1|),

|5A1〉 = |x1x−1u−1u1|.

(28)

In equation (28) for each degenerate term the only wavefunction is given; the basis is related
to the C3 axis of the distorted tetrahedron. The trigonal one-electron states (complex trigonal
basis) relevant to this coordinate system are expressed in terms of the d-functions ξ = yz, η =
xz, ζ = xy(t2g), u = 3z2 − r 2, v = √

3(x2 − y2)(eg) defined in the tetragonal basis as
follows:

|x+〉 = −(1/√3)(εξ + ε∗η + ζ ), |x−〉 = (1/
√

3)(ε∗ξ + εη + ζ ),

|x0〉 = (1/
√

3)(ξ + η + ζ ), u+ = −(1/√2)(u + iv),

u− = (1/
√

2)(u − iv), ε = exp(2π i/3).

(29)

The energy gaps E(5E(1)) − E(5A1) = 915 cm−1 and E(5E) − E(5A1) = 4726 cm−1 were
calculated using the crystal field potential (27), the wavefunctions (28), (29) and the parameters
given in table 1. The obtained E(5E(1)) − E(5A1) gap value appreciably exceeds the thermal
energy at room temperature and, thus, the absorption band originating from CrSe3S species
can be assigned to the optical transition 5A1 → 5E. The 5A1 term interacts with the A(1)

1

and A(2)
1 vibrations of the surrounding ligands, while the 5E term in addition to these two

modes interacts with the E(1) and E(2) modes. At the next step we employ the standard
procedure [12, 13] of shifting the reference points of the symmetrized coordinates q (1)A1

and

q(2)A1
in (3) to the nuclear configurations consistent with the ground 5A1 state and introduce new

vibrational coordinates QA(1)
1

= q(1)A1
+ν(1)A1

(5A1)/h̄ω, QA(2)
1

= q(2)A1
+ν(2)A1

(5A1)/h̄ω(ν
(i)
A1
(5A1) =

〈5A1|νA(i)
1
(r)|5A1〉, (i = 1, 2)) and vibrational operators υA(1)

1
(r) = νA(1)

1
(r) − νA(1)

1
(5A1),

υA(2)
1
(r) = νA(2)

1
(r) − ν

(2)
A1
(5A1) corresponding to these modes. Such a procedure is identical

to that described in section 4 for the CrSe4 species (see equations (11)–(13)) and, therefore,
we omit its description here. The redefinition of the operators corresponding to A(1)

1 and A(2)
1

leads to υ(i)A1
(5A1) = 〈5A1|υA(i)

1
(r)|5A1〉 = 0 and υ(i)A1

(5E) = ν
(i)
A1
(5E) − νA(i)

1
(5A1), where

ν
(i)
A1
(5E) = 〈5E ‖ νA(i)

1
(r) ‖ 5E〉/√2, (i = 1, 2). The evaluation of the corresponding vibronic

coupling constants was performed in the exchange charge model of the crystal field [12–16]. In
table 3 for each vibronic constant the contributions arising from the exchange and point charge
fields are indicated. From table 3 it is seen that the interaction of the 5E state with the E(2)

vibration is weak in comparison with those with A(1)
1 ,A(2)

1 and E(1) vibrations. Therefore, this
interaction will not be taken into account in further calculations.

12
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The electron-vibrational wavefunction corresponding to the 5A1 state can be represented
as

�(5A1, n(1)A1
nA(2)

1
nEx nEy ) = |5A1〉�n

A(1)1

(QA(1)
1
)�n

A(2)1

(QA(2)
1
)�nEx

(qEx )�nEy
(qEy ), (30)

where �n
A(1)1

(QA(1)
1
), etc, are the wavefunctions of the harmonic oscillator. The corresponding

energies appear as follows

EA1(nA(1)
1
, nA(2)

1
, nEx , nEy ) = − (ν

(1)
A1
(5A1))

2

2h̄ω
− (ν

(2)
A1
(5A1))

2

2h̄ω
+ h̄ω

(
nA(1)

1
+ 1

2

)

+ h̄ω(nA(2)
1

+ 1
2 )+ h̄ω(nEx + 1

2 )+ h̄ω(nE y + 1
2 ). (31)

The vibronic Hamiltonian for the E ⊗ (e + a(1)1 + a(2)1 ) problem in the 5E state takes on the
form

Heυ(
5E) = υ

(1)
E (5E)(OE xqE x + OE yqE y)+ υ

(1)
A1
(5E)OA1 QA(1)

1
+ υ

(2)
A1
(5E)OA1 QA(2)

1
, (32)

where the elements of the matrices O�̄γ̄ represent the Clebsch–Gordan coefficients
〈�γ |,O�̄γ̄ |�γ ′〉 = 〈�γ |�γ ′�̄γ̄ 〉 for the C3v point symmetry group [20]

OEx = 1√
2

(
0 1
1 0

)
, OEy = 1√

2

(
1 0
0 −1

)
,

υ
(1)
E (5E) = 〈5E ‖ ν

(1)
E (r) ‖ 5E〉/√2. The hybrid vibronic functions corresponding to the

dynamical JT problem in the excited 5E term are written as

�E
ν (n

(1)
A1
, n(2)A1

) = �n(1)A1
(QA(1)

1
− Q0

A(1)
1
)�n(2)A1

(QA(2)
1

− Q0
A(2)

1
)

∑

γ=x,y
nEx ,nEy

C E
ν (γ, nEx , nEy )

× �nEx
(qEx )�nEy

(qEy )|γ 〉. (33)

Here Q0
A(1)

1

= − υ
(1)
A1
(5E)

h̄ω ≡ a(
5E)

1 , Q0
A(2)

1

= − υ
(2)
A2
(5E)

h̄ω ≡ a(
5E)

2 . The energies of the vibronic states

�E
ν (n A11 , n A12 ) are

ε(nA(1)
1
, nA(2)

1
, ν) = �

(5E)
1 + h̄ω(nA(1)

1
+ 1

2 )+ h̄ω(nA(2)
1

+ 1
2 )+ εE

ν , (34)

where�(5E)
1 = �−((ν(1)A1

(5E))2+(ν(2)A1
(5E))2)/(2h̄ω),� is the crystal field energy gap between

the states 5E and 5A1 and εE
ν are the eigenvalues of the 5E ⊗ e JT vibronic problem. For

the numerical solution of this problem the vibronic matrix was truncated, the number N of
the harmonic oscillator states satisfied the condition nx + ny � N , where in calculations N
was taken to be equal to 60. The general dimension of the matrix was 3782 × 3782. The
Lanczos method was applied for calculation of the hybrid vibronic states and wavefunctions.
The procedure of derivation of the formula for the absorption band shape is described in detail
in section 4. Therefore, we do not go into details below. Performing the transformations similar
to those in section 4 we obtain the following expression for the shape of the absorption band
arising from the CdSe3S:Cr2+ species:

F2(�) = 1

Z2
Exp

[
− (a1

(5E))2

2
coth

(
β

2

)]
Exp

[
− (a2

(5E))2

2
coth

(
β

2

)]

×
∑

ν,n A11 ,n A12 ,
nEx ,nEy

Exp

[
− EA1(n A11 , n A12 , nEx , nEy )

kT

]{
1

3
|C E
ν (Eu, nEx , nEy )|2

13
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+ 1

3
|C E
ν (Eυ, nEx , nEy )|2

} ∞∑

n1=−∞

∞∑

n2=−∞
In1

(
(a1

(5E))2

2Sh(β/2)

)
In2

(
(a2

(5E))2

2Sh(β/2)

)

× Exp

[
n1β

2

]
Exp

[
n2β

2

]
1√

2πλ2

× Exp

[
− (�1 + h̄ω(n1 + n2)− h̄ω(nEx + nEy + 1)+ εE

ν − h̄�)2

2λ2

]

× |〈5E ‖ dE ‖ 5A1〉|2
2

, (35)

where 〈5E ‖ dE ‖ 5A1〉 is the matrix element of the effective dipole moment, the symbol dE

denotes the component of the dipole moment which transforms according to the irreducible
representation E of the C3v point group; as in (22) the averaging over the light polarization was
performed while deriving (35). Finally,

Z2 = Exp

(
(ν
(1)
A1
(5A1))

2 + (ν
(2)
A1
(5A1))

2

2h̄ωkT

)
1

4 sinh2(β/2)
(36)

is the partition function for the ground states (31). In calculations for species CrSe4−ySy(y =
0–3) the vibrational frequency was approximately taken as

h̄ω = h̄ωCdSe

√
mSe(4mCd + (mSe(4 − y)+ mSy))

(mSe + mCd)(mSe(4 − y)+ mS y)
.

In the limiting cases of y = 0 and 4 this expression gives a reasonable result: h̄ω = h̄ωCdSe =
60 cm−1

h̄ωCdS = h̄ωCdSe

√
mSe(mCd + mS)

mS(mCd + mSe)
≈ 80 cm−1.

The latter coincides with the value known from literature [6] and given in table 1.
In figure 4 the calculated spectra arising from different species CrSe4−ySy(y = 1–3) with

mixed ligand surroundings are shown. The contribution K2(�) ∼ �F2(�) of the CrSe3S
species to the absorption spectra (K2(�) is the absorption coefficient) of the CdSe0.6S0.4:Cr2+
crystal has been calculated with the aid of parameters given in tables 1 and 3. It is
seen that that this contribution is significant (figure 4). The maximum of the band arising
from this species is blue shifted as compared with that belonging to the band from CrSe4

species.

5.2. CrSeS3 complex

The symmetry of the impurity complex CrSeS3 is also C3v. The trigonal crystal field splits the
state 5T2 into two levels 5E(1) and 5A1, with 5E(1) being the ground state (figure 2(d)). The
splitting of the 5T2 state can be described by the crystal field operator (27) if a substitution
R →← R0 is made. However, now the order of the levels 5E(1) and 5A1 is reversed as compared
to the case of the CrSe3S species (figure 2(c)). The calculated energy gap 932 cm−1 between
the states 5E(1) and 5A1 is large in comparison with the thermal energy and the absorption
band is formed by the only transition 5E(1) → 5E. To determine the vibronic problems to
be solved for these levels the vibronic coupling constants have been calculated (table 4) with
the aid of wavefunctions (28) and corresponding vibrational operators. The redefinition of
the vibronic operators A(1)

1 and A(2)
1 similar to that described in section 5.1 (see also (12)

14
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Figure 4. Calculated contributions from species with mixed ligand surroundings of the Cr2+ ion to
the total absorption spectra at T = 300 K: 1, CrSe3S1: 2, CrSe2S2: 3, CrSe1S3: 4, total spectrum
arising from CrSe4−ySy species (y = 1–3).

Table 4. Vibronic coupling constants (in cm−1) for the CrSeS3 complex.

ν
(1)
A1
(5E(1)) ν

(2)
A1
(5E(1)) υ

(1)
E (5E(1)) υ

(2)
E (5E(1))

pc ec Total pc ec Total pc ec Total pc ec Total

14 45 59 −40 −74 −114 −9 −72 −81 19 37 56

ν
(1)
A1
(5E) ν

(2)
A1
(5E) υ

(1)
A1
(5E) υ

(2)
A1
(5E)

pc ec Total pc ec Total pc ec Total pc ec Total

−20 −59 −79 1 5 6 −34 −104 −138 41 79 120

υ
(1)
E (5E) υ

(2)
E (5E)

pc ec Total pc ec Total

61 12 73 10 2 12

and (13)) leads to vanishing vibronic constants υ(i)A1
(5E(1))(i = 1, 2) for the ground 5E(1)

state and υ(1)A1
(5E) = −138 cm−1, υ(2)A1

(5E) = 120 cm−1 for the excited 5E state. For both
5E(1) and 5E terms the interaction with the E(1) mode is stronger than that with the E(2)

mode. Therefore, in further calculations we consider only the interaction of these terms with
the E(1) mode. For the ground 5E(1) term the Hamiltonian of vibronic interaction looks as
follows

Heυ(
5E(1)) = υ

(1)
E (5E(1))(qEx OEx + qEy OEy ). (37)

In fact we solve the vibronic two-mode E ⊗ e problem with the interaction constant
υ
(1)
E (5E(1)) = −100 cm−1 which slightly differs from the calculated one (see table 4). The

eigenvalues and eigenvectors for this problem can be written as

15
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Egr
ν (nA(1)

1
, nA(2)

1
) = − (ν

(1)
A1
(5E(1)))2

2h̄ω
− (ν

(2)
A1
(5E(1)))2

2h̄ω
+ h̄ω

(
nA(1)

1
+ 1

2

)

+ h̄ω
(

nA(2)
1

+ 1
2

)
+ εgr

ν ,

�gr
ν (nA(1)

1
, nA(2)

1
) = �n(1)A1

(QA(1)
1
)�n

A(2)1

(QA(2)
1
)

∑

γ=x,y
nEx ,nEy

Cgr
ν (γ, nEx , nEy )

× �nEx
(qEx )�nEy

(qEy )|γ 〉,

(38)

where the values εgr
ν will be determined from the solution of the E ⊗ e JT problem for the

5E(1) term, ν(i)A1
(5E(1)) = 〈5E(1) ‖ νA(i)

1
(r) ‖ 5E(1)〉/√2, (i = 1, 2). For the 5E term the vibronic

E⊗(e + a(1)1 + a(2)1 ) problem is examined, the eigenvectors and eigenfunctions complying with
this problem can be represented as

Eex
ν (nA(1)

1
, nA(2)

1
) = �− (ν

(1)
A1
(5E))2

2h̄ω
− (ν

(2)
A1
(5E))2

2h̄ω
+ h̄ω

(
nA(1)

1
+ 1

2

)

+ h̄ω
(

nA(2)
1

+ 1
2

)
+ εex

ν ,

�ex
ν (nA(1)

1
, nA(2)

1
) = �n(1)A1

(QA(1)
1

− Q̃0
A(1)

1
)�n(2)A1

(QA(2)
1

− Q̃0
A(2)

1
)

×
∑

γ=x,y
nEx ,nEy

Cex
ν (γ, nEx , nEy )�nEx

(qEx )�nEy
(qEy )|γ 〉,

(39)

where

Q̃0
A1

(1) = −υ̃(1)A1
(5E)/(h̄ω) ≡ ã(

5E)
1 , Q̃0

A1
(2) = −υ̃(2)A1

(5E)/(h̄ω) ≡ ã(
5E)

2 ,

υ̃
(i)
A1
(5E) = ν

(i)
A1
(5E)− ν

(i)
A1
(5E(1)),

and εex
ν is the solution of the E ⊗ e problem for the 5E term. While solving the vibronic

E ⊗ e problems for the initial and final terms of the optical transition 5E(1) → 5E the condition
nEx + nEy � N (N = 60) was retained as in the case of CrSe3S species. The shape F3(�) of
the absorption band arising from the impurity cluster CrSeS3 is given by the expression

F3(�) = 1

Z4
Exp

[
− (ã

(5E)
1 )2

2
coth

(
β

2

)]
Exp

[
− (ã

(5E)
2 )2

2
coth

(
β

2

)]
∑

ν,ν′
Exp

[
− E

Egr
ν

kT

]

×
{ ∑

nEx ,nEy

[(Cex
ν′ (x, nEx , nEy ))

∗Cgr
ν (x, nEx , nEy )+ (Cex

ν′ (y, nEx , nEy ))
∗

× Cgr
ν (y, nEx , nEy )]2 |〈5E ‖ dE ‖ 5E(1)〉|2

4
+

∑

nEx ,nEy

[(Cex
ν′ (x, nEx , nEy ))

∗

× Cgr
ν (y, nEx , nEy )+ (Cex

ν′ (y, nEx , nEy ))
∗Cgr

ν (x, nEx , nEy )]2

× |〈5E ‖ dE ‖ 5E(1)〉|2
4

+
∑

nEx ,nEy

[(Cex
ν′ (x, nEx , nEy ))

∗Cgr
ν (y, nEx , nEy )

− (Cex
ν′ (y, nEx , nEy ))

∗Cgr
ν (x, nEx , nEy )]2 |〈5E ‖ dA2 ‖ 5E(1)〉|2

2

}

×
∞∑

n1=−∞

∞∑

n2=−∞
In1

(
(ã(

5E)
1 )2

2Sh(β/2)

)
In2

(
(ã(

5E)
2 )2

2Sh(β/2)

)
Exp

[
n1β

2

]
Exp

[
n2β

2

]

× 1√
2πλ2

Exp

[
− (Ẽ

ex
ν′ − Ẽ gr

ν + h̄ω(n1 + n2)− h̄�)2

2λ2

]
, (40)
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where

Ẽ gr
ν = − (ν

(1)
A1
(5E(1)))2

2h̄ω
− (ν

(2)
A1
(5E(1)))2

2h̄ω
+ εgr

ν ,

Ẽex
ν = �− (v

(1)
A1
(5E))2

2h̄ω
− (v

(2)
A1
(5E))2

2h̄ω
+ εex

ν ,

Z4 =
∑

ν

Exp

[
− Ẽ gr

ν

kT

]
,

where the notation 〈5E ‖ dE ‖ 5E(1)〉 has the same sense as in (3) and 〈5E ‖ dA2 ‖ 5E(1)〉
is the reduced matrix element of the dipole moment component that transforms according
the irreducible representation A2 of the C3v point group. The partial contribution K3(�) ∼
�F3(�) of the CrSeS3 species was calculated with the aid of parameters given in tables 1 and
4 and it is depicted in figure 4 (curve 3). It is obvious that this species also give a blue shifted
band relative to that originating from the CrSe4 one. At the same time the intensity of this band
is lower in comparison with the intensity of the band belonging to the CrSe3S cluster.

6. Absorption band of the impurity CrSe2S2 cluster

When the nearest neighbour surrounding of the Cr2+ ion consists of two selenium and two
sulfur atoms the symmetry of the impurity complex is C2v and the crystal field potential looks
as follows

VCF(C2v) = ie2√π
135(R0 R)5

{i√70(5A+
4 + 18B+

4 )[Y44(θ, ϕ)+ Y4−4(θ, ϕ)]
+ 4

√
10(5A−

4 + 18B−
4 )[Y42(θ, ϕ)− Y4−2(θ, ϕ)]

+ 14i(5A+
4 + 18B+

4 )Y40(θ, ϕ)

+ 18
√

30R2
0 R2(A−

2 + 2B2
−)[Y22(θ, ϕ)− Y2−2(θ, ϕ)]}, (41)

where the functions A±
p and B±

p are determined in (27). In this case the energy spectrum of the

Cr2+ ion consists of five levels 5A(1)
1 ,

5A2,
5B2,

5B1,
5A(2)

1 . The states 5A(1)
1 and 5A2 originate

from the cubic 5E state, while the states 5B2,
5B1,

5A(2)
1 arise from the splitting of the ground

5T2 term (figure 2(b)). The wavefunctions of these states are

|5A2〉 = −|uξηζ |, |5A(1)
1 〉 = C1|ξηuυ| + C2|υξηζ |,

|5B1〉 = (|ξζuυ| − |ηζuυ|)/√2, |5B2〉 = (|ξζuυ| + |ηζuυ|)/√2,

|5A(2)
1 〉 = −C2|ξηuυ| + C1|υξηζ |,

(42)

where the coefficients C1 and C2 can be obtained from the diagonalization of the crystal
field potential (41). The energies of the levels 5A(1)

1 ,
5A2,

5B2,
5B1,

5A(2)
1 in the crystal field

have been calculated with the aid of the crystal field potential (41), wavefunctions (42)
and overlap integrals given in table 1. The obtained energy gaps between the ground 5B1

level and the excited 5A(2)
1 and 5B2 ones exceed essentially the thermal energy, and the

absorption band of the CrSe2S2 cluster at room temperature arises from the optical transitions
5B1 → 5A2,

5B1 → 5A(1)
1 between orbitally nondegenerate states interacting with one-

dimensional vibrations. While calculating the structure of the multiphonon absorption band
the interaction of the terms 5B1,

5A2 and 5A(1)
1 with the vibrations A(1)

1 ,A(2)
1 and A(3)

1 was

17



J. Phys.: Condens. Matter 19 (2007) 486213 S Klokishner et al

Table 5. Vibronic coupling constants (in cm−1) for the CrSe2S2 complex.

ν
(1)
A1
(5B1) ν

(2)
A1
(5B1) ν

(3)
A1
(5B1)

pc ec Total pc ec Total pc ec Total

17 36 53 70 131 201 16 2 18

ν
(1)
A1
(5A1

(1)) ν
(2)
A1
(5A1

(1)) ν
(3)
A1
(5A1

(1))

pc ec Total pc ec Total pc ec Total

−17 −52 −69 2 −15 −13 63 18 81

υ
(1)
A1
(5A1

(1)) υ
(2)
A1
(5A1

(1)) υ
(3)
A1
(5A1

(1))

pc ec Total pc ec Total pc ec Total

−34 −88 −122 −68 −146 −214 47 16 63

ν
(1)
A1
(5A2) ν

(2)
A1
(5A2) ν

(3)
A1
(5A2)

pc ec Total pc ec Total pc ec Total

−19 −53 −72 −15 −17 −32 −58 −8 −6 6

υ
(1)
A1
(5A2) υ

(2)
A1
(5A2) υ

(3)
A1
(5A2)

pc ec Total pc ec Total pc ec Total

−36 −89 −125 −85 −148 −233 −74 −10 −84

taken into account. The vibrational coordinates for modes A(1)
1 ,A(2)

1 ,A(3)
1 and the vibrational

operators corresponding to these modes were redefined:

QA(1)
1

= q(1)A1
+ ν

(1)
A1
(5B1)/h̄ω, QA(2)

1
= q(2)A1

+ ν
(2)
A1
(5B1)/h̄ω,

QA(3)
1

= q(3)A1
+ ν

(3)
A1
(5B1)/h̄ω, υA(1)

1
(r) = νA(1)

1
(r)− ν

(1)
A1
(5B1),

υA(2)
1
(r) = νA(2)

1
(r)− ν

(2)
A1
(5B1), υA(3)

1
(r) = νA(3)

1
(r)− ν

(3)
A1
(5B1),

(43)

here ν(i)A1
(5B1) = 〈5B1|νA1

(i) (r)|5B1〉, (i = 1–3). As a result the electron-vibrational energies
and states complying with the ground 5B1 term can be written as

E
5B1(nA(1)

1
, nA(2)

1
, nA(3)

1
) = ε

5B1 + h̄ω
(
nA(1)

1
+ nA(2)

1
+ nA(3)

1
+ 3

2

)
,

ψ
5B1(nA(1)

1
, nA(2)

1
, nA(3)

1
) = �n(1)A1

(QA(1)
1
)�n(2)A1

(QA(2)
1
)�n(3)A1

(QA(3)
1
)|5B1〉 (44)

here

ε
5B1 = − 1

2h̄ω

(
(ν
(1)
A1
(5B1))

2 + (ν
(2)
A1
(5B1))

2 + (ν
(3)
A1
(5B1))

2
)
.

For the excited states 5A(1)
1 and 5A2 participating in the optical transitions 5B1 → 5A(1)

1 ,
5B1 → 5A2 the strongest is the interaction with the A(2)

1 mode, at the same time the interaction
with the A(1)

1 and A(3)
1 vibrations is weaker, but appreciable (table 5). For this reason the

interaction of the excited terms 5A(1)
1 and 5A2 with all active vibrations is taken into account.

The electron-vibrational wavefunctions and corresponding energies for the excited terms 5A(1)
1

and 5A2 are:

E(�)(nA(1)
1
, nA(2)

1
, nA(3)

1
) = ε(�) + h̄ω

(
nA(1)

1
+ nA(2)

1
+ nA(3)

1
+ 3

2

)
,

ψ(�)(nA(1)
1
, nA(2)

1
, nA(3)

1
) = �n

A
(2)
1

(QA(2)
1

− Q0
A(2)

1
(�))�n

A
(2)
1

× (QA(2)
1

− Q0
A(2)

1
(�))�n

A
(3)
1

(QA(3)
1

− Q0
A(3)

1
(�))|�〉,

(45)
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here � = 5A(1)
1 ,

5A2,

Q0
A(i)

1
(�) = −υ

(i)
A1
(�)

h̄ω
≡ ai

(�), υ
(i)
A1
(�) = ν

(i)
A1
(�)− ν

(i)
A1
(5B1), (i = 1–3),

ε(�) = �(�) − 1

2h̄ω
((ν

(1)
A1
(�))2 + (ν

(2)
A1
(�))2 + (ν

(3)
A1
(�))2).

The shape of the absorption band arising from the 5B1 → 5A(1)
1 and 5B1 → 5A2 transitions

is described as follows:

F4(�) =
∑

�=5A1
(1) ,5A2

{
1

3
Exp

[
− (a1

(�))2

2
coth

(
β

2

)]
Exp

[
− (a2

(�))2

2
coth

(
β

2

)]

× Exp

[
− (a3

(�))2

2
coth

(
β

2

)] ∞∑

n1,n2,n3=−∞
In1

(
(a1

(�))2

2Sh(β/2)

)
In2

(
(a2

(�))2

2Sh(β/2)

)

× In3

(
(a3

(�))2

2Sh(β/2)

)
Exp

[
n1β

kT

]
Exp

[
n2β

kT

]
Exp

[
n3β

kT

]
1√

2πλ2

× Exp

[
− (ε

(�) − ε
5B1 + h̄ω(n1 + n2 + n3)− h̄�)2

2λ2

] |〈� ‖ d�̃ ‖ 5B1〉|2
2

}
,

(46)

where �̃ = B1,B2 for � = 5A(1)
1 ,

5A2, respectively. The contribution K4(�) ∼ �F4(�) of
the CrSe2S2 species to the total absorption spectra was calculated with the aid of parameters
given in tables 1 and 5, and it is depicted in figure 4 (curve 2). It is obvious that this
species gives the highest contribution to the band arising from impurity chromium clusters with
mixed ligand surroundings. The position of the maximum of the band belonging to CrSe2S2

species almost coincides with that for the total band (figure 4, curve 4) originating from all
CrSe4−ySy(y = 1–3) species with mixed ligand surroundings.

7. Comparison of theory and experiment. Concluding remarks

The total absorption spectrum of the CdSe0.6S0.4:Cr2+ crystal has been calculated by
summation over partial spectra arising from all species described above taking into account
their statistical weights obtained in section 2. The form-function of the absorption band arising
from the CdSe0.6S0.4:Cr2+ system can be presented in the following form:

F(�) = P1 F1(�)+ P2 F2(�)+ P3 F3(�)+ P4 F4(�), (47)

where the numerical values of the probabilities Pi (i = 1–4) are given by equation (2). For
numerical calculation of the absorption coefficient K (�) ∼ �F(�) at 300 K the parameters
given in tables 1–5 were used. Insofar as all optical transitions participating in the formation
of the absorption band of the CdSe0.6S0.4:Cr2+ crystal are symmetry allowed for the first
approximation in calculations the values of the matrix elements |〈� ‖ d�̃ ‖ �′〉|2 were taken
as equal. In figure 5 the experimental and calculated spectra are shown together. Insofar as the
theoretical calculations make it possible to separate the contributions of different CrSe4−ySy

species (y = 0–3) to the total spectrum both the contributions of species with mixed ligand
surroundings and CrSe4 species are presented in figure 5. Figure 5 clearly demonstrates that
the main contribution to the absorption spectra comes from species CrSe4−ySy(y = 1–3) with
mixed ligand surroundings. Namely, these species are responsible for the observed blue shift
of the absorption band in the infrared range. Quite good agreement with the experiment was
found.
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Figure 5. Absorption band of the CdSe0.6S0.4:Cr2+ at T = 300 K, with circles showing
experimental data [5]: 1, total calculated spectrum: 2, partial contribution of the CrSe4 species:
3, partial contribution of species CrSe3S1, CrSe2S2, CrSe1S3 with mixed ligand surroundings.

The results obtained can be summarized as follows. Here we have presented a model of
optical spectra of CdSe0.6S0.4:Cr2+ crystals that takes into account the possibility of formation
of impurity clusters with mixed ligand surroundings. The most probable nearest neighbour
arrangements of the Cr2+ ion are found to include (i) four selenium atoms, (ii) three selenium
and one sulfur atom or three sulfur and one selenium atom, (iii) two selenium and two sulfur
atoms. For these arrangements of the Cr2+ ion the crystal field acting on this ion and the
interaction of the d-electrons with the vibrations of the nearest ligand surroundings were
considered in a realistic model of the crystal field with allowance for covalency effects. For
all impurity clusters CrSe4−ySy (y = 0–3) the crystal field splittings and the vibronic coupling
parameters have been microscopically calculated. Then, on this basis the vibronic JT problems
have been defined and solved numerically. The total spectrum of the CdSe0.6S0.4:Cr2+ crystal
calculated by summation over partial spectra arising from all mentioned species is in good
agreement with the experimental one.

In order to discuss the real CdSe0.6S0.4:Cr2+ system in more detail the adopted model needs
to be generalized in several aspects. A new computational approach to the problem of optical
spectra of the CrSe4 cluster that takes into account all active vibrations interacting with Cr2+ ion
should be developed. In calculations for the clusters CrSe4−ySy (y = 0–3), the frequencies of
the vibrations were taken in accordance with the composition of the nearest surrounding ligand.
This question is also in need of special consideration. In spite of these restricting assumptions,
the developed model gives a simultaneous explanation in its framework of the experimental
data on both CdSe0.6S0.4:Cr2+ and CdSe:Cr2+ crystals and reflects the main features of the
observed spectra.
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Appendix

(a) Symmetry adapted vibrational coordinates for the CdSe3S:Cr2+ complex of C3v symmetry:

q(1)A1
=

[(2x1 − x2 − x3 + √
3y2 − √

3y3)
√

m
12 − (z1 + z2 + z3)

M
3
√

m
+ z4

√
M]

√
M + m + M2

3m

q(2)A1
=

[−(2x1 − x2 − x3 + √
3y2 − √

3y3)
M√
12m
(1 + M

3m )− (z1 + z2 + z3)
M

3
√

m
+ z4

√
M]

√
M2

m (1 + M
3m )+ M2

3m + M

q(1)Ex
=

[− M
3
√

m
(2x1 + x2

2 + x3
2 −

√
3

2 y2 +
√

3
2 y3)+

√
Mx4 + √

m
6 (2z1 − z2 − z3)]

√
2M2

3m + M + m

q(2)Ex
=

M
3
√

m

(
2x1 + x2

2 −
√

3
2 y2 + x3 +

√
3

2 y3
) + M√

6m

(
1 + 2M

3m

)
(2z1 − z2 − z3)−

√
Mx4

√
2M2

3m + M2

m (1 + 2M
3m )

2 + M

q(1)Ey
=

[− M
2
√

3m
(−x2 + √

3y2 + x3 + √
3y3)+

√
m
2 (z2 − z3)+

√
M y4]

√
2M2

3m + M + m

q(2)Ey
=

[ M
2
√

3m
(−x2 + y2 + x3 + √

3y3)+ M√
2m
(1 + 2M

3m )(z2 − z3)− √
M y4]

√
2M2

3m + M2

m (1 + 2M
3m )

2 + M

(A.1)

where m and M are the masses of selenium and sulfur atoms, respectively. The numbering of
ligands in (A.1) and further on corresponds to that given in figure 1.

(b) Symmetry adapted vibrational coordinates for the CdSe2S2:Cr2+ complex of C2v

symmetry

q(1)A1
=

[(x1−x4+y1−y4)

√
M
4 +(x3−x2+y2−y3)

√
m
4 +(z1+z4)

√
M
2 −(z2+z3)

√
m
2 ]

√
M2

m +2M+m

q(2)A1
=

[(x1 − x4 + y1 − y4)

√
M
4 − (x3 − x2 + y2 − y3)

M√
4m

]
√

M + M2

m

q(3)A1
=

[(x1−x4+y1 − y4)

√
M
4 + (x3−x2+y2−y3)

√
m
4 − m√

2M
(z1+z4)+(z2+z3)

√
m
2 ]

√
M+2m+ m2

M

qA2 =
[(x1 − y1 − x4 + y4)

√
M
4 + (x3 + y3 − x2 − y2)

√
m
4 ]

√
M + m
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qB1 =
[(x1 + y1 + x4 + y4)

√
M
4 − (x2 + y2 + x3 + y3)

M√
4m

+ (z1 − z4)

√
M
4 ]

√
M2

m + 2M

qB2 =
[(x1 − y1 + x4 − y4)

√
M
4 − (x2 − y2 + x3 − y3)

M√
4m

]
√

M2

m + M

(A.2)

where, as in (A.1), m and M are the masses of the selenium and sulfur atoms, respectively.
The operators vμ̄�̄γ̄ (r) corresponding to the vibrational coordinates qμ̄�̄γ̄ have been

obtained with the aid of relations (7) and (A.1), (A.2).
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